The Risk of Bloodstream Infection in Adults With Different Intravascular Devices: A Systematic Review of 200 Published Prospective Studies

DENNIS G. MAKI, MD; DANIEL M. KLUGER, MD; AND CHRISTOPHER J. CRNICH, MD

OBJECTIVE: To better understand the absolute and relative risks of bloodstream infection (BSI) associated with the various types of intravascular devices (IVDs), we analyzed 200 published studies of adults in which every device in the study population was prospectively evaluated for evidence of associated infection and microbiologically based criteria were used to define IVD-related BSI.

METHODS: English-language reports of prospective studies of adults published between January 1, 1966, and July 1, 2005, were identified by MEDLINE search using the following general search strategy: bacteremia [Medical Subject Heading, MeSH] OR septicemia [MeSH] OR bloodstream infection AND the specific type of intravascular device (eg, central venous port). Mean rates of IVD-related BSI were calculated from pooled data for each type of device and expressed as BSIs per 100 IVDs (%) and per 1000 IVD days.

RESULTS: Point incidence rates of IVD-related BSI were lowest with peripheral intravenous catheters (0.1%, 0.5 per 1000 IVD-days) and midline catheters (0.4%, 0.2 per 1000 catheter-days). Far higher rates were seen with short-term noncuffed and nonmedicated central venous catheters (CVCs) (4.4%, 2.7 per 1000 catheter-days). Arterial catheters used for hemodynamic monitoring (0.8%, 1.7 per 1000 catheter-days) and peripherally inserted central catheters used in hospitalized patients (2.4%, 2.1 per 1000 catheter-days) posed risks approaching those seen with short-term conventional CVCs used in the intensive care unit. Surgically implanted long-term central venous devices—cuffed and tunneled catheters (22.5%, 1.6 per 1000 IVD-days) and central venous ports (3.6%, 0.1 per 1000 IVD-days)—appear to have high rates of infection when risk is expressed as BSIs per 100 IVDs but actually pose much lower risk when rates are expressed per 1000 IVD-days. The use of cuffed and tunneled dual lumen CVCs rather than noncuffed, nontunneled catheters for temporary hemodialysis and novel preventive technologies, such as CVCs with anti-infective surfaces, was used for hemodynamic monitoring.

CONCLUSIONS: Expressing risk of IVD-related BSI per 1000 IVD-days rather than BSIs per 100 IVDs allows for more meaningful estimates of risk. These data, based on prospective studies in which every IVD in the study cohort was analyzed for evidence of associated infection and microbiologically based criteria, show that all types of IVDs pose a risk of IVD-related BSI and can be used for benchmarking rates of infection caused by the various types of IVDs in use at the present time. Since almost all the national effort and progress to date to reduce the risk of IVD-related infection have focused on short-term noncuffed CVCs used in intensive care units, infection control programs must now strive to consistently apply essential control measures and preventive technologies with all types of IVDs.

BSI = bloodstream infection; CDC = Centers for Disease Control and Prevention; CVC = central venous catheter; ICU = intensive care unit; IV = intravenous; IVD = intravascular device; PA = pulmonary artery; PICC = peripherally inserted central venous catheter

R eliable vascular access is an essential feature of modern-day health care. The variety and numbers of intravascular devices (IVDs) used for vascular access in the US health care system have increased greatly during the past 30 years. For example, the use of short-term central venous catheters (CVCs) of all types, such as the conventional noncuffed and nontunneled triple-lumen catheter, the pulmonary artery (PA) catheter, and the short-term percutaneously inserted noncuffed hemodialysis catheter, and arterial catheters for hemodynamic monitoring is now ubiquitous in modern day intensive care units (ICUs). On the other hand, there has been a substantial increase in the use of IVDs for stable long-term or indefinite vascular access, not only in the hospital but also increasingly in the outpatient setting, such as surgically implanted cuffed and tunneled CVCs, central venous ports, and peripherally inserted central venous catheters (PICCs). These devices are used for a wide range of indications, extending far beyond fluid and transfusion therapy, including total parenteral nutrition, chemotherapy, home antibiotic therapy, and, increasingly, chronic outpatient hemodialysis. During the past decade, medicated CVCs with anti-infective surface activity have also come into clinical use.

Unfortunately, the use of devices for vascular access is associated with an underappreciated risk of IVD-related bloodstream infection (BSI), caused by microorganisms that colonize the implanted device or contaminate the fluid pathway at the time of insertion or during its use. Intra-vascular devices are now the single most important cause of health care–associated BSI, with an estimated 250,000 to 500,000 IVD-related BSIs occurring each year throughout the United States. Although there has been

From the Section of Infectious Diseases, Department of Medicine, University of Wisconsin Medical School and the Infection Control Department, University of Wisconsin Hospital and Clinics, Madison.

Supported by an unrestricted gift for research from the Oscar Rennebohm Foundation of Madison, Wis.

Individual reprints of this article are not available. Address correspondence to Dennis G. Maki, MD, H5/574, University of Wisconsin Hospital and Clinics, Madison, WI 53792 (e-mail: dgmaki@medicine.wisc.edu).

© 2006 Mayo Foundation for Medical Education and Research

For personal use. Mass reproduce only with permission from Mayo Clinic Proceedings.
recent dispute whether IVD-related BSIs are associated with true attributable mortality.14-18 there is universal agreement that IVD-related BSIs are associated with increased hospital length of stay, from 10 to 20 days, and excess health care costs, ranging from $4000 to $56,000 per episode.14-18 It is generally acknowledged that the various types of IVDs in use today pose disparate risks of IVD-related BSIs; however, the magnitude of this variability is largely unknown. We report a systematic analysis of published prospective studies of infection associated with the various types of IVDs in adults to determine the relative risks of IVD-related BSI, which can be used for decision making in the selection of IVDs and for benchmarking.

METHODS

Sources of Data
English-language reports of prospective studies of adults published between January 1, 1966, and July 1, 2005, were identified by MEDLINE search using the following general search strategy: bacteremia [Medical Subject Heading, MeSH] OR septicemia [MeSH] OR bloodstream infection AND the specific type of intravascular device (eg, central venous port). Additional studies of relevance were identified by reviewing the citations of reviews of IVD-related BSI published since 1973.2-14 The following criteria were required for a study to be included in this analysis: (1) the exact type of device studied was described; (2) all data on IVD-related BSI were collected prospectively; (3) the criteria used for determining the presence of IVD-related BSI were clearly specified; (4) the study, at the minimum, used criteria consonant with those of the Centers for Disease Control and Prevention (CDC) and the National Nosocomial Infections Surveillance System19; and (5) the duration of device implantation in the study population was reported or could be determined from the data provided, permitting quantification of risk.

Subgroup Analyses
Given the variation in the criteria used to define IVD-related BSI in the studies reviewed, subgroup analyses of studies, stratified by the rigor of the criteria used, were undertaken.

For short-term percutaneously inserted devices, outcomes for 3 subgroups were compared: (1) all studies, including those that met only the most minimal CDC criteria (ie, primary BSI with an IVD in place, vis-à-vis, BSI without a plausible identifiable source other than the IVD); (2) studies in which an assessment of IVD-related BSI required microbial concordance between a culture of a segment of the removed catheter and a separate percutaneously drawn blood culture but the study protocol did not require culturing of removed devices in the study population unless there was clinical suspicion of infection; and (3) studies in which all the study cohort’s devices were removed and cultured for evidence of colonization \textit{and} criteria for IVD-related BSI required microbial concordance between a culture of the removed device and a separate percutaneously drawn blood culture.20

For long-term, surgically implanted IVDs, outcomes of 2 subgroups were analyzed: (1) all studies, including those that met minimal CDC criteria; and (2) studies in which the definition of IVD-related BSI required microbial concordance between a culture of the removed device and a separate percutaneously drawn blood culture \textit{or} a 5-fold or greater differential quantitative positivity between paired quantitative blood cultures drawn from the IVD and from a peripheral vein \textit{or} a quantitative blood culture from the device grew more than 1000 colony-forming units.20

Statistical Analyses
Best estimates of the risk of IVD-related BSI for each type of IVD—the point incidence with 95% confidence intervals—were calculated from the pooled rates of all studies that met inclusion criteria. Because there was considerable range in the sample sizes of the study populations, each study was weighted by its relative sample size in the IVD group. The resulting rates are identical to those that would be obtained by weighting studies by the inverse of their variance, assuming a common variance within IVD type.

These data satisfy the distributional assumptions for a Poisson distribution, a 1-parameter model in which the statistical mean and variance are identical, which is commonly used to model such data.21 Because the pooled rate is identical to the weighted mean, the data are reported in terms of the pooled rate for all studies of each device and expressed per 100 devices and per 1000 device-days, with 95% confidence intervals calculated using Microsoft Excel v.X for Macintosh (Microsoft Inc, Redmond, Wash) and SAS 8.2 (SAS Institute Inc, Cary, NC).

RESULTS

Two hundred studies that prospectively examined the risk of IVD-related BSI with peripheral intravenous (IV) catheters and steel needles,22-32 midline catheters,33-35 arterial catheters for hemodynamic monitoring,36-40 PA catheters,37,50-61 PICCs,35,62-75 nonmedicated CVCs,33,37,44-46,54,63,76-148 medicated CVCs,44,105-107,111-114,116,117,121-123,130,133,136,139-141,144,145,147-150 short-term noncuffed and nontunneled hemodialysis CVCs,126,151-165 long-term cuffed and tunneled hemodialysis catheters,165-180 cuffed and tunneled all-purpose Hickman-
RISK OF IVD-RELATED BLOODSTREAM INFECTION

It can be seen that, when risk is expressed as BSIs per 100 devices (Table 3), the highest rates of infection were with percutaneous left ventricular assist devices (26.1%), surgically implanted cuffed and tunneled all-purpose CVCs (22.5%), and cuffed and tunneled hemodialysis catheters (21.2%). Rates were considerably lower with

like CVCs,35,128,181-207 central venous ports,35,191,197,199,201,207-215 peripheral subcutaneous central venous ports,207,216,217 left ventricular assist devices,218-220 and intra-aortic balloon pumps221 fulfilled criteria for inclusion in this systematic review. The patient populations in the studies included in the analysis are shown in Tables 1 and 2.

<table>
<thead>
<tr>
<th>Catheter type</th>
<th>No. of studies by patient care unit and/or patient characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ICU</td>
</tr>
<tr>
<td>Peripheral IV catheters</td>
<td></td>
</tr>
<tr>
<td>Plastic catheters</td>
<td>2</td>
</tr>
<tr>
<td>Steel needles</td>
<td>...</td>
</tr>
<tr>
<td>Venous cutdown</td>
<td>...</td>
</tr>
<tr>
<td>Midline catheters</td>
<td>1</td>
</tr>
<tr>
<td>Arterial catheters for hemodynamic monitoring</td>
<td>15</td>
</tr>
<tr>
<td>Peripherally inserted central venous catheters</td>
<td>3</td>
</tr>
<tr>
<td>Central venous catheters</td>
<td></td>
</tr>
<tr>
<td>Nonmedicated</td>
<td>44</td>
</tr>
<tr>
<td>Tunneled</td>
<td>2</td>
</tr>
<tr>
<td>Medicated</td>
<td></td>
</tr>
<tr>
<td>Chlorhexidine-silver-sulfadiazine</td>
<td>11</td>
</tr>
<tr>
<td>Minocycline-rifampin</td>
<td>2</td>
</tr>
<tr>
<td>Silver</td>
<td>1</td>
</tr>
<tr>
<td>Silver iontophoretic</td>
<td>...</td>
</tr>
<tr>
<td>Benzalkonium chloride</td>
<td>...</td>
</tr>
<tr>
<td>Hemodialysis catheters</td>
<td></td>
</tr>
<tr>
<td>Noncuffed and nontunneled</td>
<td>...</td>
</tr>
<tr>
<td>Cuffed and tunneled</td>
<td>...</td>
</tr>
<tr>
<td>Subcutaneous central ports</td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>...</td>
</tr>
<tr>
<td>Peripheral</td>
<td>...</td>
</tr>
<tr>
<td>Intra-aortic balloon pumps</td>
<td>1</td>
</tr>
<tr>
<td>Left ventricular assist devices</td>
<td>3</td>
</tr>
</tbody>
</table>

*AIDS = acquired immunodeficiency syndrome; ICU = intensive care unit; IV = intravenous; TPN = total parenteral nutrition.

TABLE 2. Features of Patients Studied With Long-term Intravascular Devices*

<table>
<thead>
<tr>
<th>Catheter type</th>
<th>TPN</th>
<th>Hematology/oncology</th>
<th>AIDS</th>
<th>Anti-infective therapy</th>
<th>Chronic renal failure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midline catheters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripherally inserted central venous catheters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central venous catheters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonmedicated, nontunneled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonmedicated, tunneled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemodialysis catheters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noncuffed, nontunneled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-term cuffed and tunneled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuffed and tunneled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcutaneous central ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*AIDS = acquired immunodeficiency syndrome; TPN = total parenteral nutrition.

For personal use. Mass reproduce only with permission from Mayo Clinic Proceedings.
TABLE 3. Rates of Intravascular Device-Related Bloodstream Infection Caused by Various Types of Devices Used for Vascular Access*

<table>
<thead>
<tr>
<th>Device</th>
<th>No. of studies</th>
<th>No. of catheters</th>
<th>No. of IVD (d)</th>
<th>No. of BSIs</th>
<th>Rates of IVD-related bloodstream infection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Per 100 devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pooled mean</td>
</tr>
<tr>
<td>Peripheral IV catheters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastic catheters</td>
<td>110</td>
<td>10,910</td>
<td>28,720</td>
<td>13</td>
<td>0.1</td>
</tr>
<tr>
<td>Steel needles</td>
<td>1</td>
<td>148</td>
<td>350</td>
<td>3</td>
<td>2.0</td>
</tr>
<tr>
<td>Venous cutdown</td>
<td>1</td>
<td>27</td>
<td>111</td>
<td>1</td>
<td>3.7</td>
</tr>
<tr>
<td>Midline catheters</td>
<td>3</td>
<td>514</td>
<td>9251</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>Arterial catheters for hemodynamic monitoring</td>
<td>14</td>
<td>4366</td>
<td>21,397</td>
<td>37</td>
<td>0.8</td>
</tr>
<tr>
<td>Peripherally inserted central catheters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inpatient and outpatient</td>
<td>15</td>
<td>3566</td>
<td>105,839</td>
<td>112</td>
<td>3.1</td>
</tr>
<tr>
<td>Inpatient</td>
<td>6</td>
<td>625</td>
<td>7137</td>
<td>15</td>
<td>2.4</td>
</tr>
<tr>
<td>Outpatient</td>
<td>9</td>
<td>2813</td>
<td>98,702</td>
<td>97</td>
<td>3.5</td>
</tr>
<tr>
<td>Short-term noncuffed central venous catheters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonmedicated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nontunneled</td>
<td>79</td>
<td>20,226</td>
<td>322,283</td>
<td>883</td>
<td>4.4</td>
</tr>
<tr>
<td>Tunneled</td>
<td>9</td>
<td>741</td>
<td>20,065</td>
<td>35</td>
<td>4.7</td>
</tr>
<tr>
<td>Medicated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorhexidine-silver-sulfadiazine</td>
<td>18</td>
<td>3367</td>
<td>54,054</td>
<td>89</td>
<td>2.6</td>
</tr>
<tr>
<td>Minocycline-rifampin</td>
<td>3</td>
<td>690</td>
<td>5797</td>
<td>7</td>
<td>1.0</td>
</tr>
<tr>
<td>Silver impregnated</td>
<td>2</td>
<td>154</td>
<td>1689</td>
<td>8</td>
<td>5.2</td>
</tr>
<tr>
<td>Silver iontophoresic</td>
<td>2</td>
<td>396</td>
<td>4796</td>
<td>16</td>
<td>4.0</td>
</tr>
<tr>
<td>Benzalkonium chloride</td>
<td>1</td>
<td>277</td>
<td>2493</td>
<td>12</td>
<td>4.3</td>
</tr>
<tr>
<td>Pulmonary artery catheters</td>
<td>13</td>
<td>2087</td>
<td>8143</td>
<td>30</td>
<td>1.5</td>
</tr>
<tr>
<td>Hemodialysis catheters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary, noncuffed</td>
<td>16</td>
<td>3066</td>
<td>51,840</td>
<td>246</td>
<td>8.0</td>
</tr>
<tr>
<td>Long-term, cuffed and tunneled</td>
<td>16</td>
<td>2806</td>
<td>373,563</td>
<td>596</td>
<td>21.2</td>
</tr>
<tr>
<td>Cuffed and tunneled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central venous catheters</td>
<td>29</td>
<td>4512</td>
<td>622,535</td>
<td>1013</td>
<td>22.5</td>
</tr>
<tr>
<td>Subcutaneous venous ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>14</td>
<td>3007</td>
<td>983,480</td>
<td>81</td>
<td>3.6</td>
</tr>
<tr>
<td>Peripheral</td>
<td>3</td>
<td>579</td>
<td>162,203</td>
<td>23</td>
<td>4.0</td>
</tr>
<tr>
<td>Intra-aortic balloon pumps</td>
<td>1</td>
<td>101</td>
<td>414</td>
<td>3</td>
<td>3.0</td>
</tr>
<tr>
<td>Left ventricular assist devices</td>
<td>3</td>
<td>157</td>
<td>19,653</td>
<td>41</td>
<td>26.1</td>
</tr>
</tbody>
</table>

*BSI = bloodstream infection; CI = confidence interval; IV = intravenous; IVD = intravascular device.

For personal use. Mass reproduce only with permission from Mayo Clinic Proceedings.

Temporary noncuffed hemodialysis catheters (8.0%), silver-impregnated CVCs (5.2%), noncuffed but tunneled CVCs (4.7%), noncuffed and nontunneled CVCs (4.4%), benzalkonium chloride–coated CVCs (4.3%), silver iontophoresic CVCs (4.0%), peripheral subcutaneous central venous ports (4.0%), central venous ports (3.6%), outpatient PICCs (3.5%), intra-aortic balloon pumps (3.0%), chlorhexidine-silver-sulfadiazine–impregnated CVCs (2.6%), inpatient PICCs (2.4%), PA catheters (1.5%), minocycline-rifampin–impregnated CVCs (1.0%), arterial catheters (0.8%), midline catheters (0.4%), and peripheral IV catheters (0.1%).

In contrast, when risk is expressed as BSIs per 1000 IVD-days (Table 3), the level of risk differed, often substantially. The highest rates of IVD-related BSI occurred with peripheral IV catheters placed by surgical cutdown (9.0 per 1000 IVD-days), peripheral steel needles (8.6), intra-aortic balloon pumps (7.3), benzalkonium chloride–coated CVCs (4.8), short-term noncuffed hemodialysis catheters (4.8), silver-impregnated CVCs (4.7), PA catheters (3.7), and silver iontophoresic CVCs (3.3); rates were considerably lower with noncuffed, nontunneled multilumen CVCs (2.7), inpatient PICCs (2.1), left ventricular assist devices (2.1), tunneled but noncuffed CVCs (1.7), arterial catheters (1.7), chlorhexidine-silver-sulfadiazine–impregnated CVCs (1.6), cuffed and tunneled all-purpose Hickman-like CVCs (1.6), long-term cuffed and tunneled hemodialysis CVCs (1.6), minocycline-rifampin–impregnated CVCs (1.2), outpatient PICCs (1.0), peripheral IV catheters (0.5), peripheral central venous subcutaneous ports (0.1), and central venous ports (0.1).
TABLE 4. Subgroup Analyses of Studies of Short-term Intravascular Devices*

<table>
<thead>
<tr>
<th>Device</th>
<th>All studies</th>
<th>Studies requiring microbial concordance between catheter and blood cultures</th>
<th>Studies requiring microbial concordance and all devices cultured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of studies</td>
<td>IVD-related BSIs per 1000 IVD-days (95% CI)</td>
<td>No. of studies</td>
</tr>
<tr>
<td>Peripheral IV catheters</td>
<td>10</td>
<td>0.5 (0.2-0.7)</td>
<td>9</td>
</tr>
<tr>
<td>Midline catheters</td>
<td>3</td>
<td>0.2 (0.0-0.5)</td>
<td>2</td>
</tr>
<tr>
<td>Arterial catheters for hemodynamic monitoring</td>
<td>14</td>
<td>1.7 (1.2-2.3)</td>
<td>11</td>
</tr>
<tr>
<td>Peripherally inserted central catheters</td>
<td>15</td>
<td>1.0 (0.8-1.2)</td>
<td>5</td>
</tr>
<tr>
<td>Noncuffed central venous catheters</td>
<td>Nonmedicated</td>
<td>79 2.7 (2.6-2.9)</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Tunnneled</td>
<td>9 1.7 (1.2-2.3)</td>
<td>7</td>
</tr>
<tr>
<td>Medicated Chlorhexidine-silver-sulfadiazine</td>
<td>18</td>
<td>1.6 (1.3-2.0)</td>
<td>16</td>
</tr>
<tr>
<td>Minocycline-rifampin</td>
<td>3</td>
<td>1.2 (0.3-2.1)</td>
<td>3</td>
</tr>
<tr>
<td>Pulmonary artery catheters</td>
<td>13</td>
<td>3.7 (2.4-5.0)</td>
<td>11</td>
</tr>
<tr>
<td>Noncuffed, nontunneled hemodialysis catheters</td>
<td>16</td>
<td>4.8 (4.2-5.3)</td>
<td>11</td>
</tr>
</tbody>
</table>

*BSI = bloodstream infection; CI = confidence interval; IV = intravenous; IVD = intravascular device.

Risk estimates of IVD-related BSI in the subgroups of studies of short-term devices that used the most rigorous study design and criteria for determination of infection differed little from the overall group of prospective studies of each device, including those fulfilling only minimal CDC criteria (Table 4). With long-term IVDs (Table 5), the pooled estimates of risk of IVD-related BSI with cuffed and tunneled CVCs were approximately 30% lower when studies requiring microbial concordance between a culture of the explanted device and peripheral blood cultures or a differential count greater than 5-fold in paired quantitative blood cultures or more than 1000 colony-forming units of growth from an IVD-drawn quantitative blood culture were analyzed, but the relative level of risk for these device types among all the IVD types studied remained essentially unchanged.

DISCUSSION

An analysis of this type is inherently limited by the heterogeneity of patient populations, protocols for catheter insertion and site care, and manufacturers’ devices used in the studies analyzed. Moreover, the criteria used for defining IVD-related BSI varied across studies, although all the studies met published and widely accepted definitions of IVD-related BSI.10,19,20 Finally, because of differing degrees of severity of illness, a particular type of device may be associated with a higher risk of infection if used prefer-

TABLE 5. Subgroup Analyses of Studies of Surgically Implanted Long-term Intravascular Devices*

<table>
<thead>
<tr>
<th>Device</th>
<th>All studies</th>
<th>Studies requiring microbial concordance between IVD and blood cultures or >5-fold differential positivity in paired quantitative blood cultures or >1000 CFU from a catheter-drawn blood culture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of studies</td>
<td>IVD-related BSIs per 1000 IVD-days (95% CI)</td>
</tr>
<tr>
<td>Cuffed and tunneled hemodialysis catheters</td>
<td>16</td>
<td>1.6 (1.5-1.7)</td>
</tr>
<tr>
<td>Cuffed and tunneled central venous catheters</td>
<td>29</td>
<td>1.6 (1.5-1.7)</td>
</tr>
<tr>
<td>Central venous ports</td>
<td>14</td>
<td>0.1 (0.0-0.1)</td>
</tr>
</tbody>
</table>

*BSI = bloodstream infection; CFU = colony-forming unit; CI = confidence interval; IVD = intravascular device.
RISK OF IVD-RELATED BLOODSTREAM INFECTION

ential in a more critically ill or vulnerable patient population. We were unable to adjust for these confounding factors since most of the studies did not provide sufficient data to perform an assessment of severity of illness or comorbid illnesses across all the included studies. However, the subgroup analyses of studies using the most rigorous criteria for determination of infection did not differ materially from the overall study population, which included studies using the most minimal CDC criteria (Tables 4 and 5). Given these limitations, we believe it is important to be cautious about making formal comparisons of risk between different types of devices except when they appear to have been studied in similar patient populations. The primary purpose of our review is to point out that all types of IVDs pose significant but often widely differing risks of IVD-related BSI.

Despite these limitations, we believe these data in adults, and similar data we have analyzed in children, provide a useful database that defines relative and representative risks of IVD-related BSI with the various types of devices in use at the present time. Within hospitals, rates of nosocomial BSI are based on clinical surveillance of nosocomial infections. We believe that clinical surveillance data in general overestimate the true risk of catheter-related BSI with CVCs while underestimating the actual risk of IVD-related BSI with other types of IVDs because each device in use in the hospital during the surveillance period is not routinely scrutinized, as occurs in a prospective research study of IVD-related infection. Thus, we believe that our analysis defines upper-level benchmarks for representative rates of device-related BSI for all types of IVDs.

In most hospitals, as now recommended by the CDC, the Joint Commission on Accreditation of Healthcare Organizations, and the Agency for Healthcare Research and Quality, risk of CVC-related BSI is expressed as catheter-associated BSIs per 1000 CVC-days; in essence, all health care–associated BSIs that cannot reasonably be linked to a site of local infection are attributed to the patient’s CVC. The implication of this practice, as noted, is that the true risk of CVC-related BSI is usually overestimated because some BSIs are actually secondary BSIs deriving from unrecognized sites of local infection, such as an intra-abdominal abscess, nosocomial pneumonia, or urinary tract infection; moreover, in granulocytopenic and other severely immunocompromised patients, primary BSIs may occasionally derive from microbial translocation, also unrelated to a CVC. Finally, as noted, concomitant use of other IVDs, such as arterial catheters in an ICU —which are underappreciated for their potential to cause catheter-related BSI—further inflates estimates of the risk of CVC-related BSI. We believe that hospitals conducting surveillance for benchmarking and to assess intramural trends and progress would be better served to also report their rates of BSI originating from IVDs as IVD-related BSIs per 1000 device-days, particularly with central venous devices. This can be easily accomplished using the more rigorous diagnostic methods and criteria for IVD-related BSI used by most of the studies analyzed in this review.

For many years, the risk of nosocomial BSI originating from an IVD was expressed solely by IVD-related BSIs per 100 devices, vis-à-vis, the percentage of devices studied. However, in recent years, as now widely recommended, US hospitals have been calculating and reporting rates, particularly with CVCs, as BSIs per 1000 catheter-days. Our analysis provides the first rigorous data to support this practice. As shown in Table 3, cuffed and tunneled CVCs appear to be far more hazardous (22.5% risk of catheter-related BSI) than short-term nonmedicated, noncuffed, and nontunneled CVCs (4.4%); PICCs used in outpatients (3.5%), mainly for home antimicrobial therapy, appear to be more hazardous than PICCs used in inpatients (2.4%). However, when risk is expressed per 1000 catheter-days, cuffed and tunneled all-purpose CVCs, used primarily for long-term access in patients with leukemia, bone marrow transplant recipients, and other immunocompromised patients, pose only half the risk of catheter-related BSI (1.6 per 1000 IVD-days) over time as noncuffed and nontunneled multilumen CVCs (2.7 per 1000 IVD-days), used most often in immunocompetent patients in an ICU. When used in inpatients, PICCs cause considerably more catheter-related BSIs (2.1 per 1000 catheter-days) than when used in outpatients (1.0 per 1000 catheter-days). Similarly, in the ICU, short-term noncuffed multilumen CVCs might appear to be considerably more hazardous (4.4%) than PA catheters (1.5%); however, when rates are expressed per 1000 catheter-days, PA catheters (3.7 per 1000 catheter-days) actually pose higher risks of catheter-related BSI than noncuffed multilumen CVCs (2.7 per 1000 catheter-days).

Arterial catheters, which permit continuous blood pressure monitoring and ready access for blood specimens, especially for arterial blood gas measurements, are used in more than 6 million patients in US hospitals each year. The CDC does not advocate surveillance of arterial catheter–related BSIs, and many clinicians consider arterial catheters to pose little risk of catheter-related BSI, in contrast to their patients’ CVCs, and do not regularly culture arterial catheters in patients suspected of line sepsis. Our analysis suggests that this practice is not justified (Table 3). Arterial catheters are among the most heavily manipulated catheters in the ICU or the operating room and, as a result, the risk of arterial catheter–related BSI (1.7 per 1000 cath-
RISK OF IVD-RELATED BLOODSTREAM INFECTION

For long-term central venous access, these data show that surgically implanted central and peripheral venous ports pose far less risk than cuffed and tunneled catheters (0.1 vs 1.6 BSIs per 1000 IVD-days), a finding that is consonant with a large prospective observational study of complications with both types of devices.97 However, it must be cautioned that clinicians making decisions on types of devices to use for long-term access should recognize that, if the patient will need continuous access for many days or intermittent access day after day, a cuffed and tunneled catheter is preferable to a subcutaneous central port,12,14 which becomes much more vulnerable to becoming infected if accessed repeatedly or continuously for prolonged periods.

For intermediate-term central access, such as in patients in an ICU, this analysis suggests that tunneling a noncuffed CVC reduces the risk of CVC-related BSI by 33% (1.7 vs 2.7 per 1000 IVD-days), a finding consistent with a recent meta-analysis.232 However, the added time and effort to tunnel a noncuffed CVC, particularly in patients who may be coagulopathic and vulnerable to excessive bleeding, has limited the practice of tunneling noncuffed standard CVCs in most US ICUs. The use of novel technology, such as CVCs with anti-infective surfaces44,105-107,111-114,116,117,121-123,130,131,136,139-141,144,145,147-150 (Table 3) and chlorhexidine-impregnated site dressings,233 is more simple and at least as effective at reducing the risk of CVC-related BSI239 and can obviate the need to tunnel a CVC catheter as an infection control strategy.

Updated evidence-based recommendations for prevention of IVD-related BSI were published in 2002 by an expert panel convened by the CDC’s Hospital Infection Control Practices Advisory Committee.12 This guideline provides state-of-the-art recommendations, each scored by the quality of the underlying scientific evidence, ranging from consensus theoretical rationale to well-designed prospective, randomized clinical trials, and covers all aspects of IVD care, both in adults and children. Consistent application of these recommendations, especially if buttressed by the preventive technologies,220 can greatly reduce the risk of IVD-related BSI.225 Over the past decade, hospitals that have taken a highly organized, multidisciplinary systems approach that starts with formal training of all ICU personnel who insert and care for noncuffed CVCs and focuses on limiting femoral site insertions, routine use of maximal sterile barriers during catheter insertion, disinfection of insertion sites with tincture of chlorhexidine rather than iodine-based antiseptics, and prompt removal of unneeded catheters have reported striking reductions in the incidence of CVC-associated BSI within their ICUs.234-238 However, these programs have focused on a small fraction of hospitalized patients with IVDs, those in an ICU with
short-term noncuffed CVCs. The median incidence of CVC-associated BSI in the medical-surgical ICUs of the hospitals of CDC’s National Nosocomial Infection Surveillance System study between 1992 and 2002 was nearly 5 cases per 1000 catheter-days, and it is clear that quality improvement programs aimed to make vascular access as safe as possible must address all forms of vascular access and all types of IVDs, not only devices used throughout the hospital but also those used in the outpatient setting, where up to 2 million persons in the United States have an implanted IVD that is used daily or intermittently. This systematic review can provide a database on which institutional quality improvement efforts can benchmark and against which studies of preventive strategies can be assessed.

CONCLUSIONS

These data, based on prospective studies in which every IVD was analyzed for evidence of infection using microbiologically based criteria, show that all types of IVDs pose a risk of IVD-related BSI and can be used for benchmarking rates of infection caused by various types of IVDs in use at the present time. Expressing risk of IVD-related BSI per 1000 IVD-days allows for more meaningful estimates of risk than measuring BSIs per 100 IVDs. Since almost all the national effort to date to reduce the risk of IVD-related infection has focused on short-term CVCs used in ICUs, we believe that infection control programs must begin to strive to consistently apply essential control measures and preventive technologies with all types of IVDs.

We are grateful to Richard Holcombe, PhD, for expert statistical guidance and assistance. This analysis of studies done in adults complements a similar analysis of studies done in children.

REFERENCES

76. Pettigrew RA, Lang SD, Haydock DA, Parry BR, Bremmer DA, Hill GL. Catheter-related sepsis in patients on intravenous nutrition: a prospective

RISK OF IVD-RELATED BLOODSTREAM INFECTION

