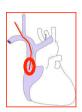


Bologna 4 dicembre 2018



Il punto sulla tip location Il ruolo centrale dell'ECG intracavitario, anche nel paziente con fibrillazione atriale

Antonio La Greca
Chirurgia d'Urgenza
F. Policlinico Gemelli – IRCCS, Università Cattolica
Sacro Cuore ROMA

Tip location: during CVC insertion !!!

Clinical Nutrition 28 (2009) 365-377

Contents lists available at ScienceDirect

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

ESPEN Guidelines on Parenteral Nutrition: Central Venous Catheters (access, care, diagnosis and therapy of complications)

Mauro Pittiruti a, Helen Hamilton b, Roberto Biffi c, John MacFie d, Marek Pertkiewicz e

"Ideally, the position of the tip should be checked *during* the procedure"

"Use methods for identifying CVAD tip location during the insertion procedure (ie, real time) due to greater accuracy, more rapid initiation of infusion therapy, and reduced costs"

Avoid complications due to malposition Avoid costs of repositiong procedures (2-30% without intraprocedural monitoring)

Intraprocedural tip location: IC-ECG !!!

Intracavitary ECG is a well established method for verifying the position of the tip of a CVC

J Vasc Access 2011; 12 (4): 280-291 DOI: 10.5301/JVA.2011.8381 REVIEW

The electrocardiographic method for positioning the tip

of central venous catheters

Mauro Pittiruti¹, Antonio La Greca¹, Giancarlo Scoppettuolo²

JVasc Access 2012; 13 (3): 357-365

DOI: 10.5301/JVA.2012.9020

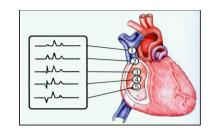
The intracavitary ECG method for positioning the tip of central venous catheters: results of an Italian multicenter study

ORIGINAL ARTICLE

JVA
155N 1129-7298


J Vasc Access 2015; 16 (2): 137-143 DOI: 10.5301/jva.5000281

ORIGINAL ARTICLE


Mauro Pittiruti¹, Daniele Bertollo², Ermanno Briglia³, Massimo Buononato⁴, Giuseppe Capozzoli⁵, Luigi De Simone⁶, Antonio La Greca¹, Cecilia Pelagattiˀ, Pier Sandro Sette⁶

The intracavitary ECG method for positioning the tip of central venous access devices in pediatric patients: results of an Italian multicenter study

Francesca Rossetti¹, Mauro Pittiruti², Massimo Lamperti³, Ugo Graziano⁴, Davide Celentano⁵, Giuseppe Capozzoli⁶

Tip location: IC-ECG

	Adults*	Children**	
Accuracy	94.5%	95.8%	
Feasibility	98.5%	99.3%	

^{*}The intracavitary ECG method for positioning the tip of central venous catheters: results of an Italian multicenter study. M Pittiruti et al J Vasc Access 2012;13(3):357-365

^{**} The intracavitary ECG method for positioning the tip of central venous devices in pediatric patients: a multicenter study. F. Rossetti, M. Pittiruti et al. J Vasc Access, 2015;16(2):137-143

IC-ECG: guidelines !!!

Not only as as an alternative

to X-Ray based controls ...

Journal of Infusion Number of the Infusion N

Infusion Therapy Standards of Practice

Clinical Nutrition 28 (2009) 365-377

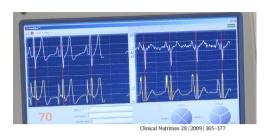
Contents lists available at ScienceDirect

Clinical Nutrition

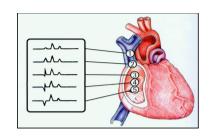
journal homepage: http://www.elsevier.com/locate/clnu

ESPEN Guidelines on Parenteral Nutrition: Central Venous Catheters (access, care, diagnosis and therapy of complications)

Mauro Pittiruti ^a, Helen Hamilton ^b, Roberto Biffi ^c, John MacFie ^d, Marek Pertkiewicz ^e


of malposition may be minimized by using a technique for intraoperative control of the position of the catheter tip (including fluoroscopy and ECG-based methods).

Ideally, the position of the tip should be checked during the procedure,² either by fluoroscopy or by the ECG method.^{28,29} If the


... but even as a first-choice method

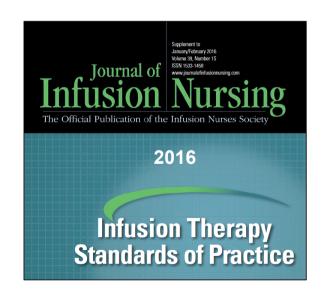
E. Use methods for identifying CVAD tip location during the insertion procedure (ie, "real time") due to greater accuracy, more rapid initiation of infusion therapy, and reduced costs.

1. Use electrocardiogram (ECG) methods with either a metal guidewire or a column of normal saline inside the catheter lumen and observe the ECG tracing to place the CVAD tip at the CAJ. Follow manufacturers' directions for use with other ECG-based technology using a changing light pattern to detect tip location.

No more X-Rays

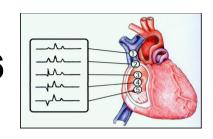
Contents lists available at ScienceDirect

Clinical Nutrition


journal homepage: http://www.elsevier.com/locate/clnu

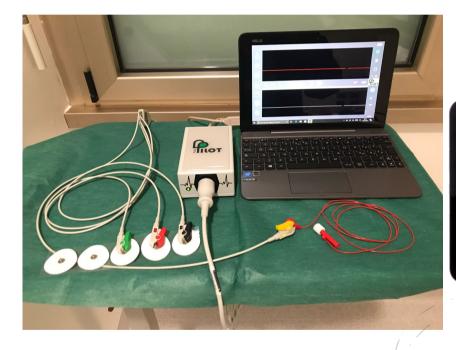
If the position has not been checked intraoperatively, a post-procedural chest X-ray should be performed to check the position of the tip

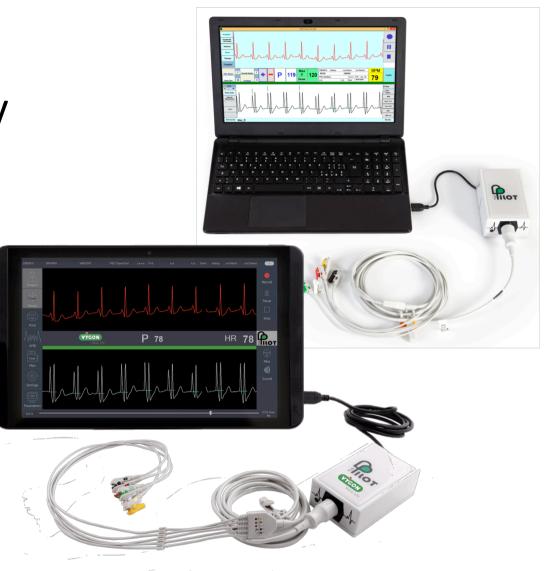
ESPEN Guidelines on Parenteral Nutrition: Central Venous Catheters (access, care, diagnosis and therapy of complications)


Mauro Pittiruti ^a, Helen Hamilton ^b, Roberto Biffi ^c, John MacFie ^d, Marek Pertkiewicz ^e

Postprocedure radiograph imaging is not necessary if alternative tip location technology confirms proper tip placement (II).

TIP LOCATION 2011-2016



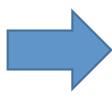

Standard of care: IC-ECG ···

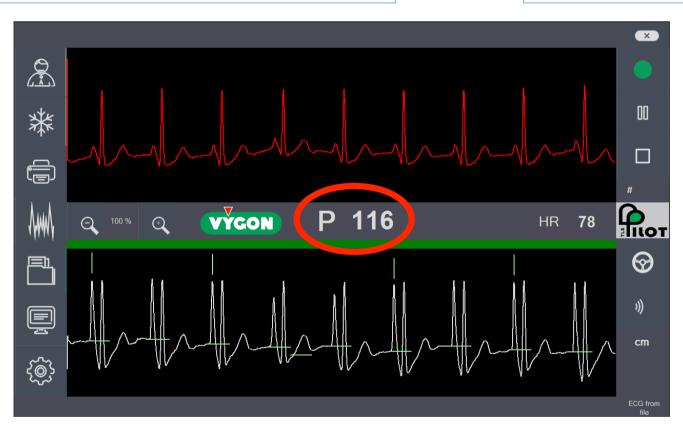
- E. Use methods for identifying CVAD tip location during the insertion procedure (ie, "real time") due to greater accuracy, more rapid initiation of infusion therapy, and reduced costs.
 - 1. Use electrocardiogram (ECG) methods with either a metal guidewire or a column of normal saline inside the catheter lumen and observe the ECG tracing to place the CVAD tip at the CAJ. Follow manufacturers' directions for use with other ECG-based technology using a changing light pattern to detect tip location.

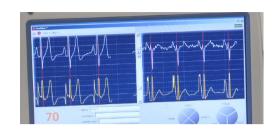
Dedicated monitors improving feasibility

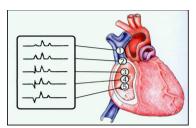
Electrical safety
Portable
Signal quality and target wave identification

Electrical safety

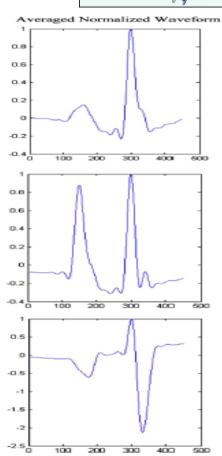



Portability




Good signal quality
Complete but user friendly dashboard
Quantitative p-wave measures

Easier target wave identification

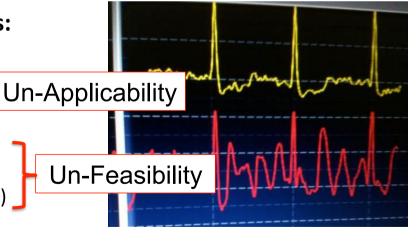

IC-ECG is based on the interpretation of changes of the p-wave during intracavitary detection of ECG:

- maximal p-wave = CAJ

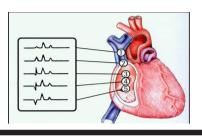
Subclavian vein

Atriocaval junction

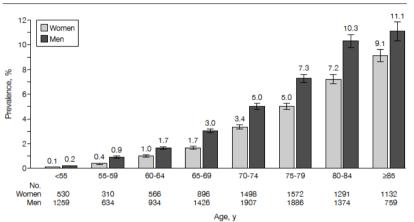
Inferior vena cava

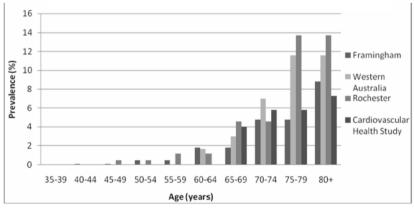

IC-ECG is based on the interpretation of changes of the p-wave during intracavitary detection of ECG:

maximal p-wave = CAJ


Conventional IC-ECG cannot be carried out when the p-wave is:

- absent (atrial fibrillation);
- abnormal (ectopic rhytms)
- hidden (active pacemakers)
- difficult to identify/evaluate (extreme tachycardia, malposition)




A subgroup of patients cannot benefit from IC-ECG:

- a) Patients without an evident P wave or with abnormal P on their basal surface ECG tracking
 - atrial fibrillation or other morphologic abnormalities of p wave (junctional rhythms and others)
 - Active atrial pace-makers

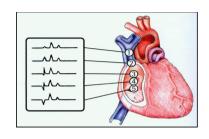
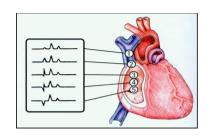

Global **applicability** (in-hospital): 91-93%

Figure 2. Prevalence of Diagnosed Atrial Fibrillation Stratified by Age and Sex

A subgroup of patients cannot benefit from IC-ECG:


- b) Difficult interpretation of a potentially detectable IC p-wave
- -training? correct procedural flow
- -technical problems (electrical interference, cable or monitor quality)
- -tachyarrythmias?
- -trembling or non cohoperating patients
- c) No p-waves variations detected despite potentially detectable IC p-wave
- refractory primary malposition
- -technical problems

Global **feasibility** (italian multicenter studies) 98.5-99.3%

Standards

Problem ...

2. Assess patient for known history of cardiac dysrhythmias and the presence of a P wave on ECG (if available) before planning to use ECG technology for placement. Contraindications to the use of ECG technology include patients with an abnormal ECG rhythm with an absence or alteration in the P wave (eg, presence of pacemakers, atrial fibrillation, extreme tachycardia). Follow manufacturers' directions for use in the appropriate patient populations.

No more X-Rays

We still want to strictly adhere to the 2013

AHRQ statement

Making Health Care
Safer II: An Updated
Critical Analysis of the
Evidence for Patient
Safety Practices

Evidence Report/Technology Assessment
Number 211

April 10 Technology Assessment
Number 211

Colored Based
April 10 Technology Assessment
Number 211

Colored Based
April 10 Technology Assessment
Number 211

Colored Based
April 10 Technology Assessment
Number 211

Annals of Internal Medicine

SUPPLEMENT

Annals of Internal Medicine

The Top Patient Safety Strategies That Can Be Encouraged for Adoption Now

March 2013 Annals of Internal Medicine Volume 158 • Number 5 (Part 2) 365

Encouraged

Multicomponent interventions to reduce falls

Use of clinical pharmacists to reduce adverse drug events

Documentation of patient preferences for life-sustaining treatment

Obtaining informed consent to improve patients' understanding of the potential risks of procedures

Team training

Medication reconciliation

Practices to reduce radiation exposure from fluoroscopy and CT

The use of surgical outcome measurements and report cards, such as those from ACS NSQIP

Rapid-response systems

Use of complementary methods for detecting adverse events or medical errors to monitor for patient safety problems

Computerized provider order entry

Use of simulation exercises in patient safety efforts

- Introducing alternative tip location methods
- Adding further tip location and/or navigation technologies to IC-ECG
- Improving applicability of IC-ECG (modified IC-ECG)
- Integrating all the above mentioned strategies (an algorithm)

Introducing alternative tip location methods

- Introducing alternative tip location methods
 - Fluoroscopy
 - Echocardiography
 - Trans-esophageal
 - Trans-thoracic
 - Modified IC-ECG

Intra-procedural tip location: Fluoroscopy

- Expensive
- Logistically unsustainable
- Inaccuracy of radiological landmarks
- X-Ray exposure (AHRQ 2013)

Intra-procedural tip location: Fluoroscopy

Making Health Care Safer II: An Updated Critical Analysis of the Evidence for Patient Safety Practices

Evidence Report/Technology Assessment

Number 211

Appendix Patient Salety
Assess Standard and County
Assess Standard and County
Patient Salety
Patient Salety
Patient Salety

Annals of Internal Medicine

SUPPLEMENT

Annals of Internal Medicine

The Top Patient Safety Strategies That Can Be Encouraged for Adoption Now

March 2013 Annals of Internal Medicine Volume 158 • Number 5 (Part 2) 365

Encouraged

Multicomponent interventions to reduce falls

Use of clinical pharmacists to reduce adverse drug events

Documentation of patient preferences for life-sustaining treatment

Obtaining informed consent to improve patients' understanding of the potential risks of procedures

Team training

Medication reconciliation

Practices to reduce radiation exposure from fluoroscopy and CT

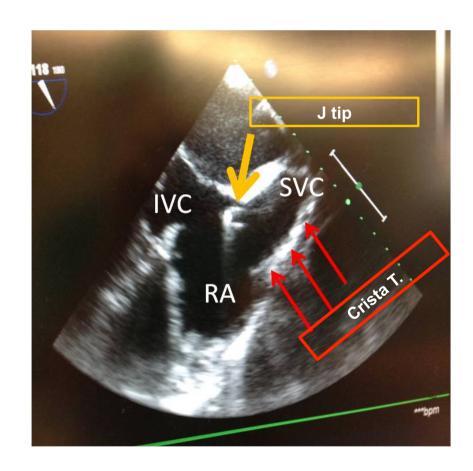
The use of surgical outcome measurements and report cards, such as those from ACS NSOIP

Rapid-response systems

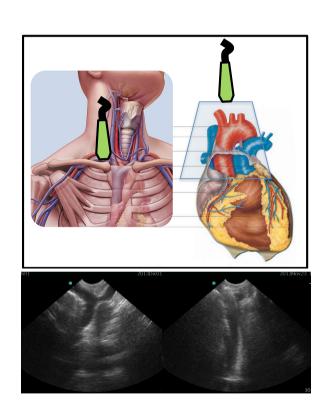
Use of complementary methods for detecting adverse events or medical errors to monitor for patient safety problems

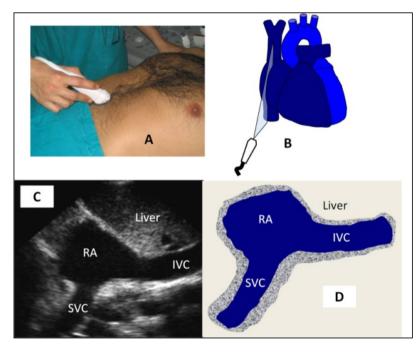
Computerized provider order entry

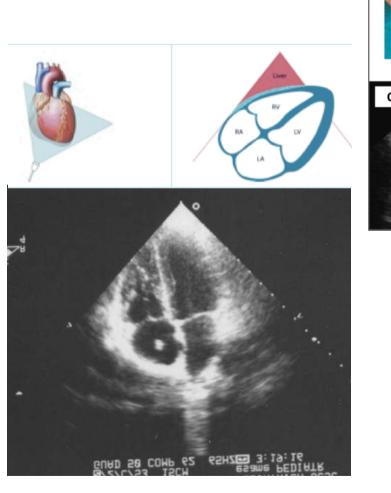
Use of simulation exercises in patient safety efforts

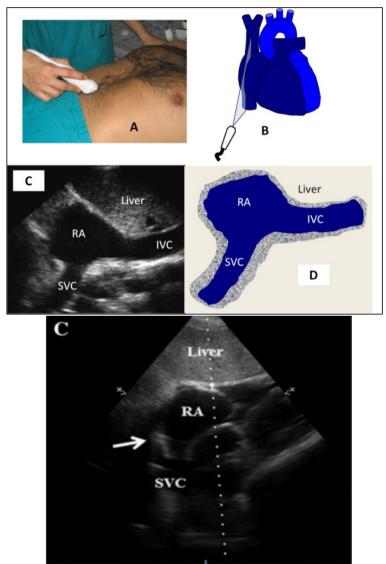

Intra-procedural tip location: Fluoroscopy

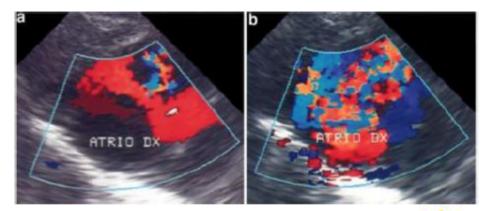
 Avoid fluoroscopy except in the case of difficult CVAD insertions, as it requires exposure to ionizing radiation.




Intra-procedural tip location: Trans-Esophageal Echocardiography


- The most accurate
- Invasive
- Specialty-based
- Only for patients under general anesthesia




Intra-procedural tip location: Trans-Thoracic Ecocardiography



Intra-procedural tip location: Trans-Thoracic Ecocardiography

Intensive Care Med (2012) 38:1105-111

CONFERENCE REPORTS AND EXPERT PANEL

Massimo Lamperti Andrew R. Bodenham Mauro Pittiruti Michael Blaivas John G. Augoustides International evidence-based recommendations on ultrasound-guided vascular access

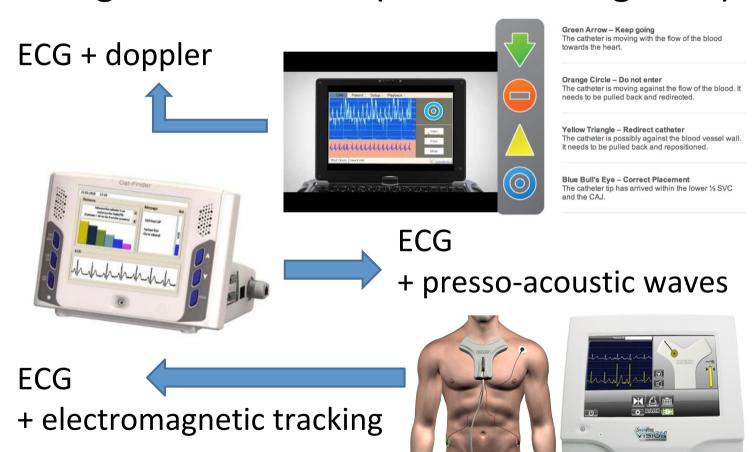
Table 4 Recommendations on ultrasound vascular access in adults and cost-effectiveness

Damain Suggested definition Level of Damas of Strongth of						
Domain code	Suggested definition	Level of evidence	Degree of consensus	Strength of recommendation		
D4.SD2.S1	Ultrasound guidance should be routinely used for short-term central venous access in adults	Α	Very good	Strong		
D4.SD2.S2	Ultrasound guidance should be routinely used for long-term central venous access in adults	Α	Very good	Strong		
D4.SD2.S3	PICCs should be routinely inserted at mid arm level by ultrasound guidance using micro introducer technique	Α	Very good	Strong		
D4.SD2.S4	Use of ultrasound guidance should be taken into consideration for any kind of peripheral intravenous line when difficult access is anticipated	В	Very good	Strong		
D4.SD2.S5	Ultrasound-guided arterial catheterization improves first-pass success and should be used routinely in adults	Α	Very good	Strong		
D4.SD2.S6	Ultrasound can accurately detect pneumothorax and should be routinely performed after central venous catheter cannulation when the pleura could have been damaged	В	Very good	Strong		
D4.SD2.S7	CEUS (contrast-enhanced ultrasound) is a valid method for detecting a central venous catheter tip in the right atrium	В	Very good	Strong		
Cost-effective	ness of the use of ultrasound for vascular cannulation					
D5.S1-3	Ultrasound-guided vascular access has to be used because it results in clinical benefits and reduced overall costs of care makes it cost-effective	Α	Very good	Strong		

Intra-procedural tip location: Trans-Thoracic Ecocardiography

3. Use caution with ultrasound for CVAD tip location, as its use in replacing chest radiographs is controversial in all ages due to small sample sizes in available studies and lack of standardized techniques. Consider use in neonates and in emergency departments when immediate knowledge of the CVAD tip location is beneficial.

2016


Infusion Therapy
Standards of Practice

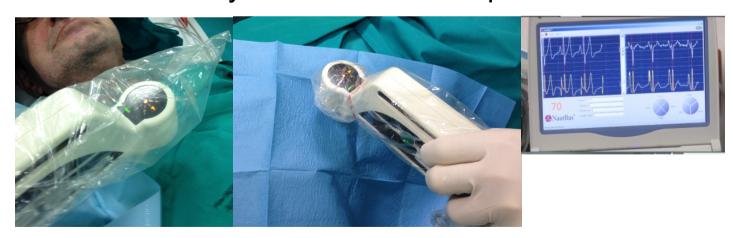
- Introducing alternative tip location methods
- Adding further tip location and/or navigation technologies to IC-ECG
- Improving applicability of IC-ECG (modified IC-ECG)
- Integrating all the above mentioned strategies (an algorithm)

 Adding further tip location and/or navigation technologies to IC-ECG

Improving feasibility: "integrated devices" (IC-ECG + navigation)

Improving feasibility: IC-ECG + navigation

Adding a navigation system may help directing the tip towards the SVC thus obtaining the expected variations in amplitude of P wave or T-Q segment (improve feasibility)

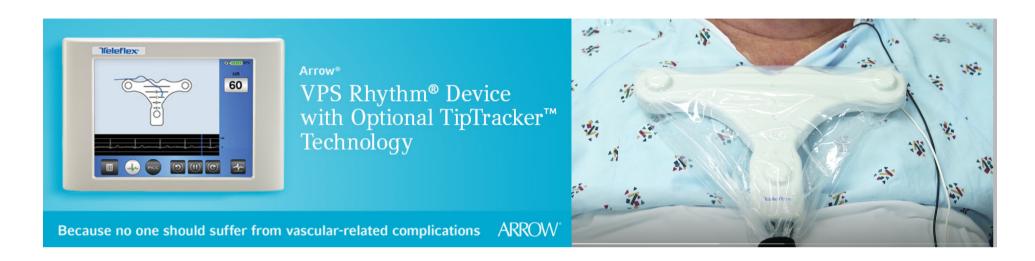


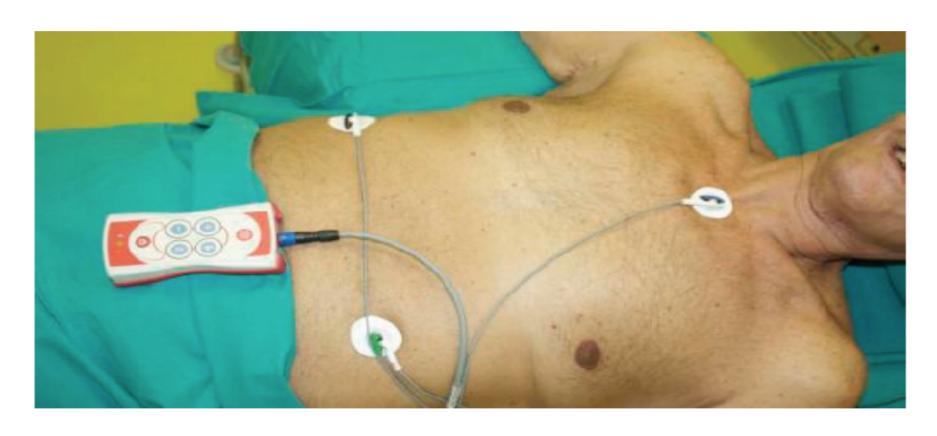
Improving feasibility: IC-ECG + navigation study

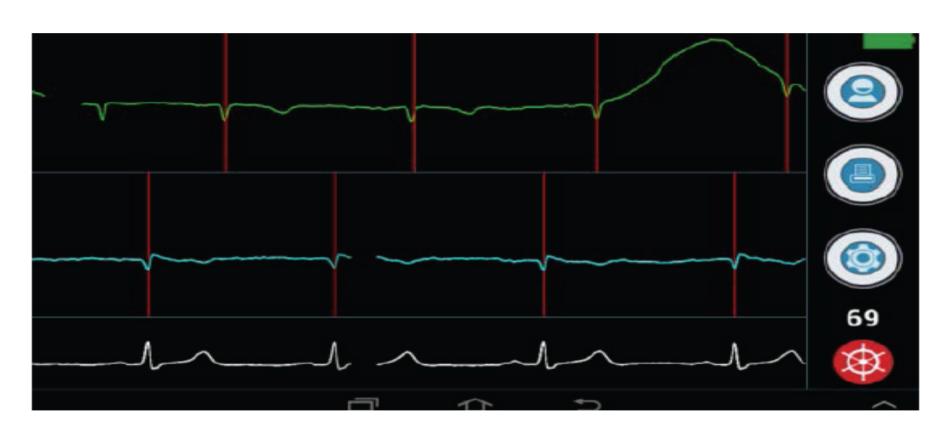
"TIP NAVIGATION + TIP LOCATION: AN ALGORITHM FOR MAXIMIZING SAFETY AND COST-EFFECTIVENESS OF CENTRAL VADs"

- 30 patients consecutively studied during PICC placement
- Navigator (Corpak) as tip navigation system
- Intracavitary ECG method for tip location.

Improving feasibility: IC-ECG + navigation study

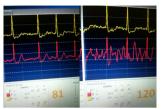

- The tip navigation device was successfully used in all patients, making the procedure easier and faster.
- In all patients, the correct tip location as evaluated by the intracavitary ECG method corresponded to the electromagnetic detection of the tip below the third intercostal space, with the tip properly directed downward.


New Sherlock (3CG)



Tip navigation by VPS Rhythm

Arrow Teleflex

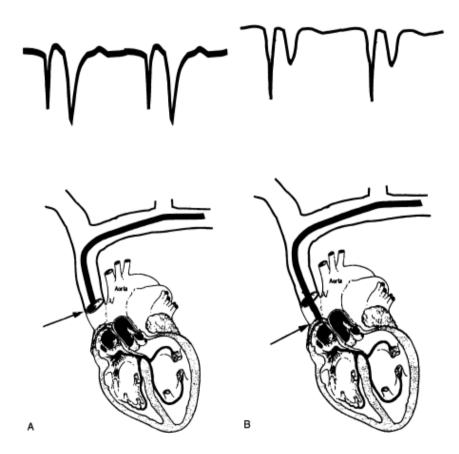


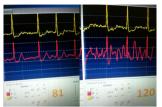
Intra-procedural tip location in the IC-ECG unsuitable patients: how?

- Introducing alternative tip location methods
- Adding further tip location and/or navigation technologies to IC-ECG
- Improving applicability of IC-ECG (modified IC-ECG)
- Integrating all the above mentioned strategies (an algorithm)

Intra-procedural tip location in the IC-ECG unsuitable patients: how?

 Improving applicability of IC-ECG (modified IC-ECG)


Improving applicability of IC-ECG (ectopic rhytms)


Junctional rhythms show a negative p wave on surface ECG

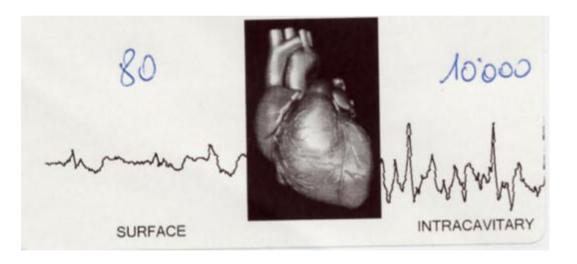
This negative wave increases in amplitude on IC-ECG while approaching the heart, reaching a maximum at the atrio-caval junction

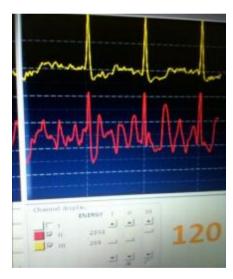
These IC-ECG modification patterns are similar to those observed in sinus rhythm patients, but specular in sign

(La Greca A, personal observation)

Improving applicability of IC-ECG (atrial fibrillation)

The mean increase of the baseline electrical activity on the intracavitary ECG recorded in patients with atrial fibrillation may be used for detecting the transition of the catheter electrode from the superior vena cava to the right atrium

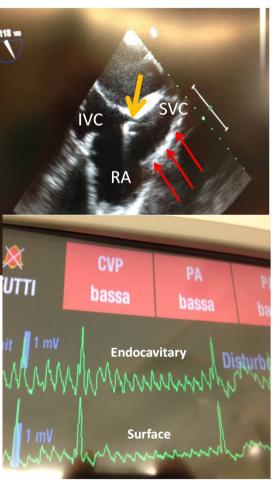

(Engelhardt 1984; Pittiruti et al. 2011 and 2016)


Using 'modified' IC-ECG for tip location, evaluating the TQ tract and not the P wave

In normal atrium, CAJ = <u>maximal P wave</u>

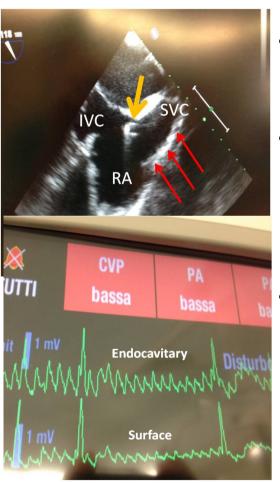
In the fibrillating atrium, CAJ = maximal activity of the atrial waves (in terms

of frequency and height)

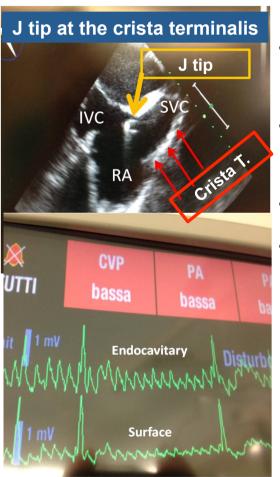


"EKG-controlled placement of central venous catheters in patients with atrial fibrillation" (Pittiruti, La Greca, Scoppettuolo et al. - INS 2011)

- Cavo-atrial junction was detected by two criteria:
 - (a) abrupt appearance of high-voltage waves when entering the right atrium and their brisk disappearance when pulling the catheter back into the vena cava superior;
 - (b) sudden increase (4-fold, 10fold) of the amount of energy recorded by the intracavitary electrode
- Post-op. chest x-ray in all patients
- Cavo-atrial junction correctly identified in 25 pts. out of 27
- Conclusion: the EKG method for verifying the position of the tip of central venous access devices can be applied in most patients with atrial fibrillation, with high accuracy (no false positives; few false negatives).

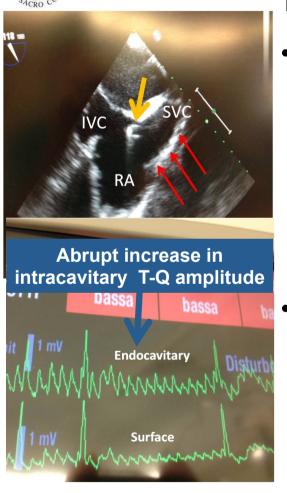


- Patients affected by atrial fibrillation and candidate to cardiac surgery (aortocoronaric bypass, valvular replacement) under emodynamic monitoring via transesophageal echocardiography + CVAD placement in the operating room have been consecutively enrolled.
- In each patient, the TEE probe is inserted after completion of the general anesthesia procedure and adjusted to obtain the atriobicaval view according to the Medical Society of Echocardiography guidelines.



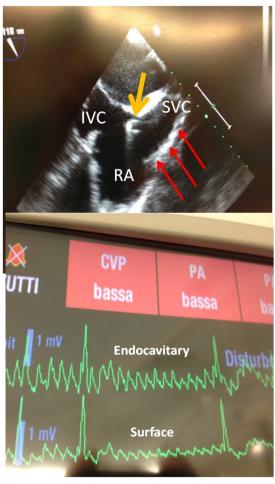
- The CVAD was inserted under ultrasound and IC-ECG guidance according to our Institution standard policy.
- The CVAD tip was placed at the CAJ as defined with regard to the crista terminalis, the anatomical and US landmark of the CAJ and then threaded 2 cm below and pulled 2 cm above it always under TEE guidance.
- The IC-ECG traces corresponding to the three US-based tip positions were saved for subsequent analysis and the catheter was left in situ at the point defined by TEE.

- 10 consecutive patients have been enrolled and included in the analysis.
- CVAD insertion successful and uneventful in all patients.
- All CVADs inserted via the right IJV.
- Guidewire J-tip exiting the catheter and the crista terminalis clearly located by the TEE operator in all patients.

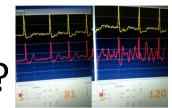


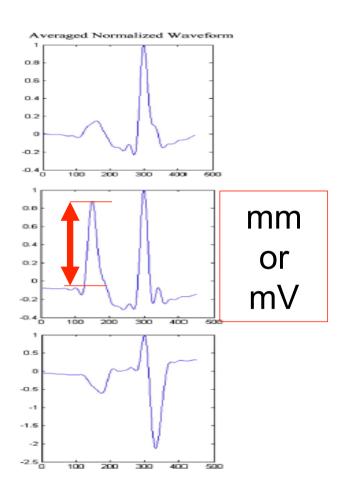
Improving applicability

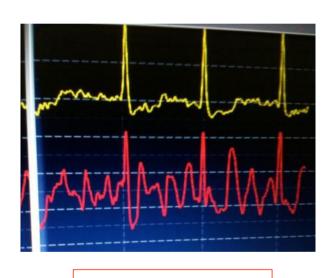
FA – Study 2


del Sacro Cuore

- Under TEE, an abrupt increase in the mean intracavitary amplitude of the asynchronous atrial electrical activity (i.e. the T-Q segment on the ECG trace) as compared to the surface trace is recorded with the J-tip placed at the crista terminalis.
- A clear reduction in amplitude is evident in the two alternative positions (SVC and deep RA) in all patients.

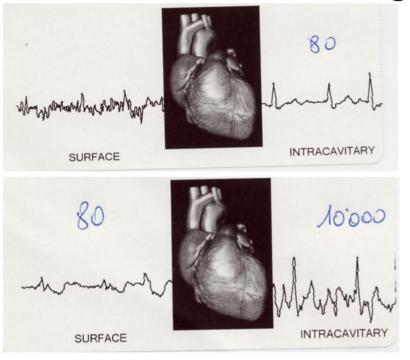






 While patients are being enrolled, further IC-ECG traces analysis is ongoing to define quantitative parameters allowing a more refined correlation between IC-ECG and tip position in FA patients (i.e.: energy et al.)

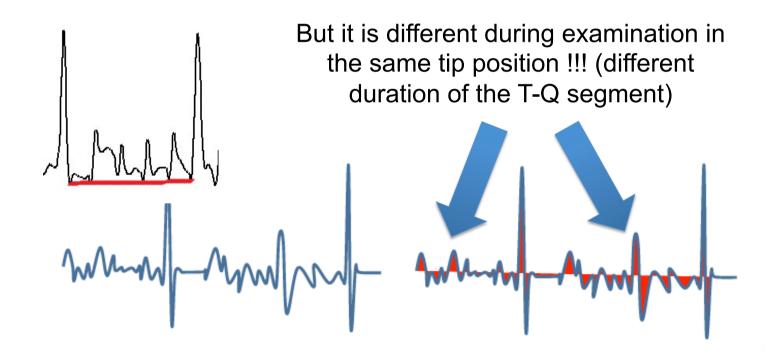
Improving applicability – FA Which quantitative parameter ?



???

Improving applicability of IC-ECG (atrial fibrillation)

Using specialized "digital" ECG monitors

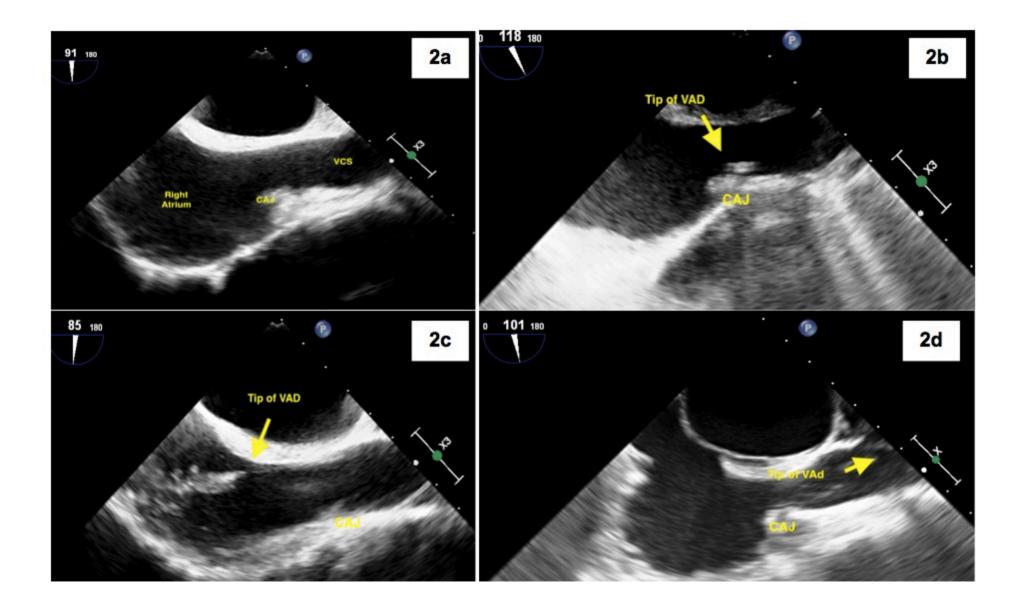

The area under the T-Q segment = atrial energy

Improving applicability of IC-ECG (atrial fibrillation)

The area under the T-Q segment (atrial "energy") might be related to the cavo-atrial junction tip location

The mean peack-to-peack maximal voltage might be related to the cavo-atrial junction tip location (more costant in different measurements at the same tip position)

Our latest study


A modified intracavitary electrocardiographic method for detecting the location of the tip of central venous catheters in atrial fibrillation patients (JVA 2018, in press)

- Same principles as study 2
 - IC-ECG + TEE during cardiac surgery
 - 3 tip positions under TEE (CAJ, CAJ + 2 cm, CAJ 2 cm)
 - IC-ECG at the 3 positions
- Parameter:
 - mean value of the maximal F wave recorded in each T-Q segment during
 10 cardiac cycles (post-recording HUMAN READING)

Methods

18 AF patients requiring simultaneously a CVC and a trans-esophageal echocardiography (TEE).

An IC-ECG trace was recorded with the catheter tip in 3 different positions defined by TEE imaging: in the superior vena cava, 2 cm above the cavoatrial junction (CAJ); at the CAJ; and in the right atrium, 2 cm below the CAJ.

Methods

Three different criteria of measurement of the f waves pattern in the TQ tract were used:

- the mean height of f waves (method A);
- the height of the highest f wave (method B);
- the difference between the highest positive peak and the lowest negative peak (method C)

Each of the three methods of measurement was applied to ten or more consecutive QRST complexes, so to get a mean value derived from many (= or > 10) different measurements

Method A

 \mathbf{W} Measurement of the the mean height of f waves


Method B

Measurement of the height of the highest f wave

Method C

Measurement of the widest difference between maximal positive peak and maximal negative peak

With the tip placed at the CAJ, the mean value of the f waves was significantly higher than in the other two positions.

ANOVA p <.001 for all

Pairwise p <.05 for each

Methods to measure	Anatomical site	Mean ± SD (number of	Pairwise comparison*
the F-wave		observations)	
Method A	SVC	1,9 ± 0,89 (385)	SVC vs CAJ
	CAJ	3,33 ± 1,47 (590)	CAJ vs RA; CAJ vs SVC
	RA	2,08 ± 0,75 (376)	RA vs CAJ
Method B	SVC	2,11 ± 1,32 (180)	SVC vs CAJ
	CAJ	4,52 ± 1,87 (180)	CAJ vs RA; CAJ vs SVC
	RA	2,03 ± 0,9 (180)	RA vs CAJ
Method C	svc	2,34 ± 1,39 (180)	SVC vs CAJ
	CAJ	5,07 ± 2,07 (180)	CAJ vs RA; CAJ vs SVC
	RA	2,32 ± 0,93 (180)	RA vs CAJ

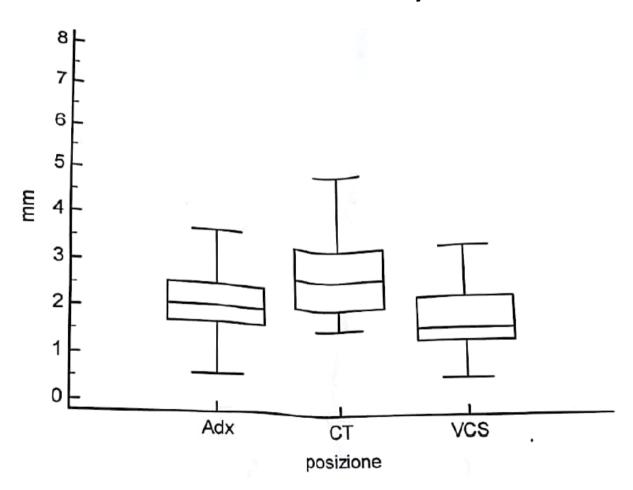
Legend. SVC =superior vena cava; RA =right atrium; CAJ = <u>cavo</u>-atrial junction; SD =standard deviation; mm =millimeter.

^{*} ANOVA was significantly different for all (p<0.001); each pairwise comparison was individually significant (p<.05) at post-hoc analysis (Scheffè test for all pairwise comparisons).

All three methods were effective in discriminating the tip position at the CAJ ...

Different methods to measure the f waves	Anatomical site	AUC ± SE (95% C.I.)*	Cut-off value (mm) **
Method A	CAJ VS SVC	0,71±0.016 (0,68-0,74)	> 2
Method A	CAJ vs RA	0,7±0,016 (0,67-0,73)	> 2,5
Method B	CAJ vs SVC	0,84 ±0,021 (0,79-0,87)	> 2
Method B	CAJ vs. RA	0,86 ±0,018 (0,82-0,9)	> 2,5
Method C	CAJ vs SVC	0,83 ±0,02 (0,78-0,86)	> 2
Method C	CAJ <u>vs</u> RA	0,85 ±0,019 (0,81-0,88)	> 3

Legend. AUC =area under curve, SE =standard error, C.I. =confidence interval, mm =millimeter, SVC = Superior Vena Cava, RA = Right Atrium, CAJ = cavo-atrial junction


- * A higher value of AUC with narrow 95% confidence interval means a better discrimination between two different positions.
- ** The cut-off value of the height of the f wave (expressed in mm) corresponds to the one associated with maximal accuracy (minimal false positive and false negative results).

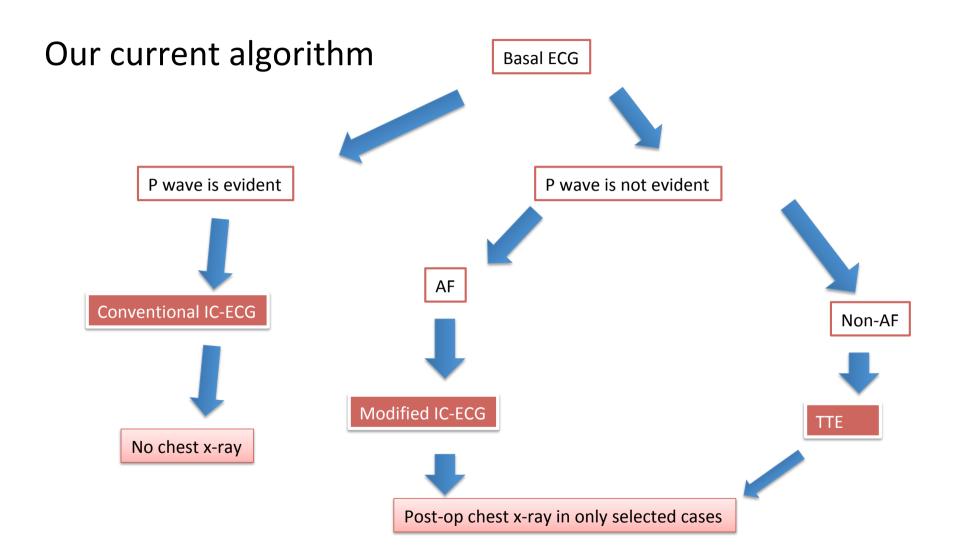
.т.
-

Different methods to measure the f waves	Anatomical site	AUC ± SE (95% C.I.)*	Cut-off value (mm) **
Method A	CAJ VS SVC	0,71±0.016 (0,68-0,74)	> 2
Method A	CAJ vs RA	0,7±0,016 (0,67-0,73)	> 2,5
Method B	CAJ vs SVC	0,84 ±0,021 (0,79-0,87)	> 2
Method B	CAJ vs RA	0,86 ±0,018 (0,82-0,9)	2,5
Metnod C	CAJ vs SVC	0,83 ±0,02 (0,78-0,86)	> 2
Method C	CAJ vs RA	0,85 ±0,019 (0,81-0,88)	> 3

... though method B proved to be the most accurate.

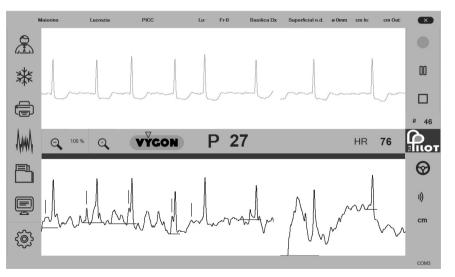
ROC Analysis
Higher value of AUC =
better discrimination
between two different
positions

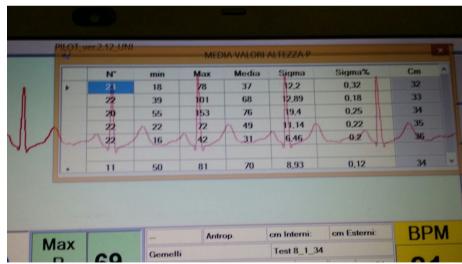
Conclusions of the study


Our study demonstrates that a 'modified' IC-ECG method based not on the maximal height of the P wave but on the maximal electrical activity of the TQ tract can be safely used for detecting the location of the tip of central VADs in AF patients.

Our data also suggests that this method should replace other tip location methods currently used in AF patients, such as fluoroscopy or post-procedural chest x-ray, since such radiological techniques are less accurate, more expensive and less safe than IC-ECG.

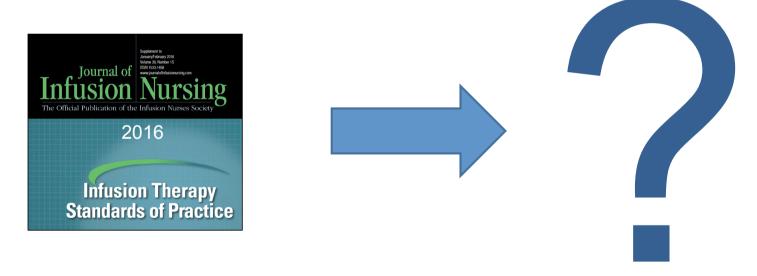
Our current algorithm in adult patients


- If a P wave is evident on basal ECG:
 - Conventional IC-ECG is enough
- If a P wave is not evident:
 - In AF patients:
 - Modified IC-ECG and/or echocardio (TTE)
 - In non-AF patients (PM, etc.):
 - Echocardio (TTE)


Improving applicability in FA

- Can we use quantitative parameters vs human eye in clinical practice ?
- User friendliness of quantitative parameters

Human eye



Quantitative parameters

Improving applicability in FA

IC-ECG in FA patients: how to introduce it into guidelines?

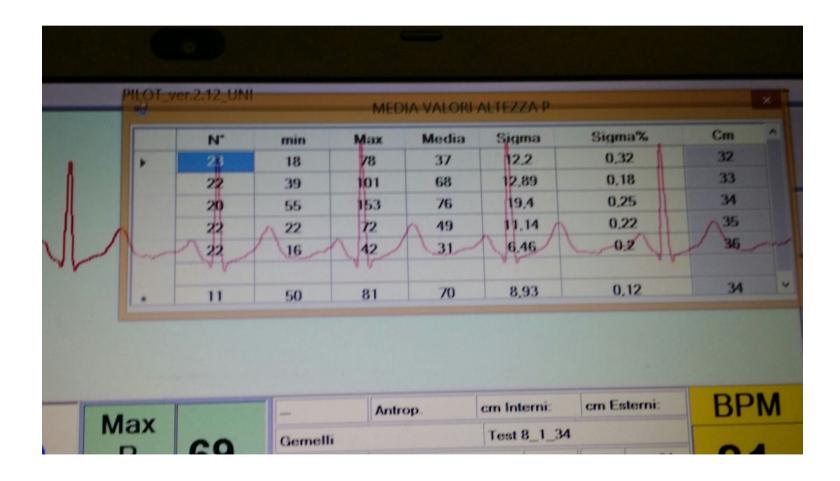
- Evidence base + chance of widespreading

Widespreading: pre-requisites

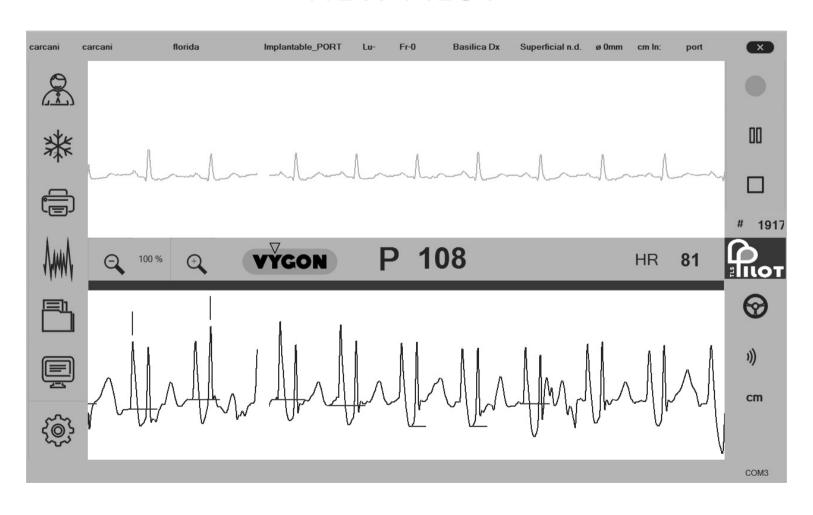
- QUANTITATIVE analysis might represent the scientific basis for validating IC-ECG in FA patients
- This should be USER FRIENDLY
- The MANUAL QUANTITATIVE analysis of the TQ tract is difficult and time-consuming.
- The Pilot provides automatically and REAL-TIME the measurement of the widest difference between maximal positive peak and maximal negative peak (method C).

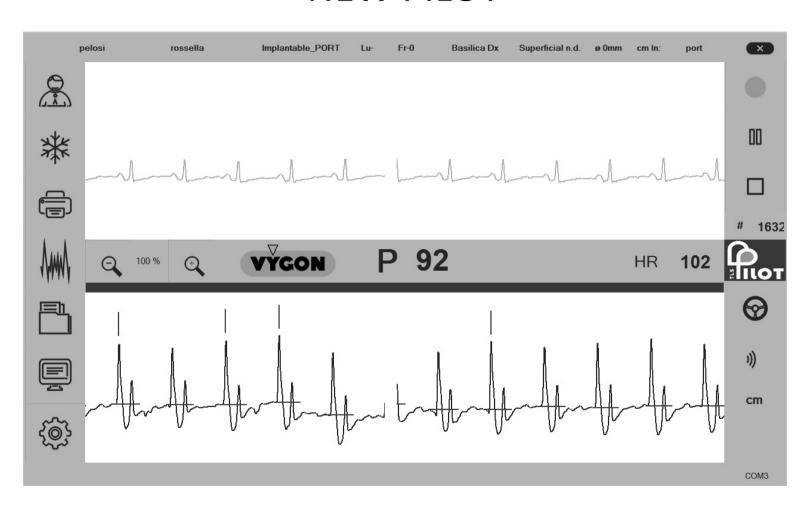
Improving applicability FA – Study 4 and 5

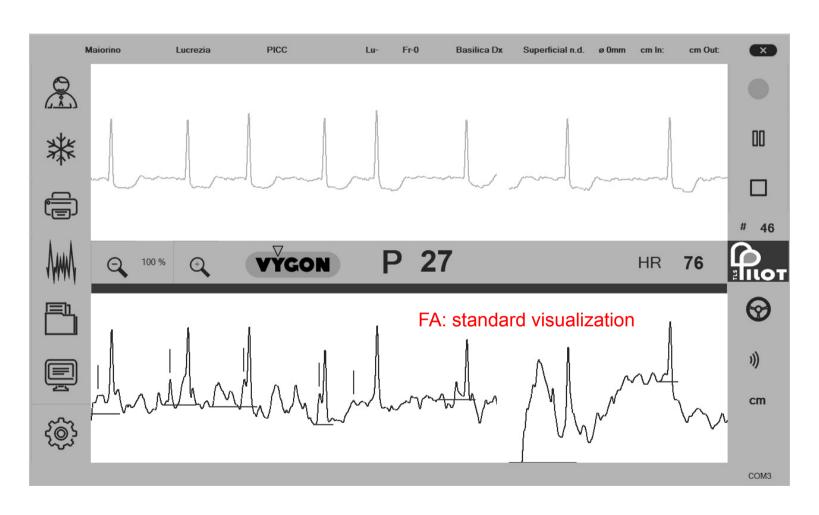
The highest T-Q activity is related to the cavo-atrial junction tip location (more costant in different measurements at the same tip position)

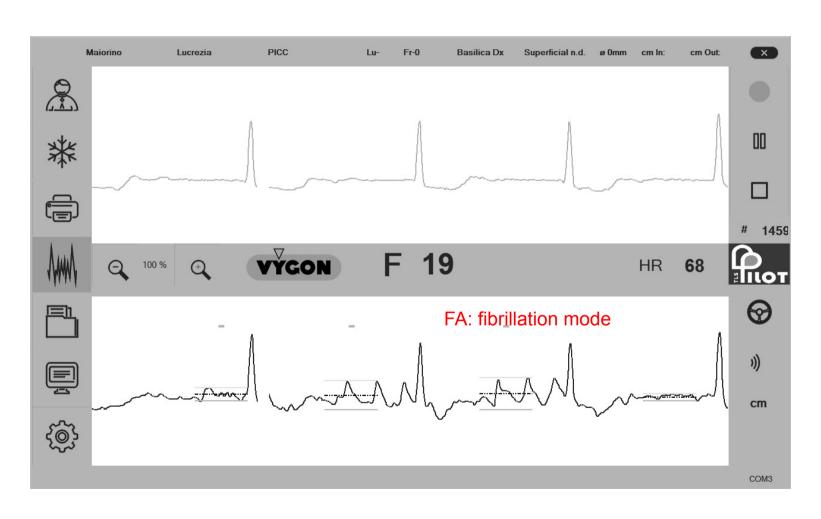

Using specialized "digital" ECG monitors to calculate this mean value *DURING THE PROCEDURE* and on more than 20 cycles instead of 10

REAL TIME!!!


OLD PILOT


OLD PILOT


NEW PILOT


NEW PILOT

NEW PILOT

PILOT

Modalità AFIB



- L'assenza di una vera e propria onda P non permette di utilizzare la procedura standard; nel paziente fibrillante è possible osservare il valore del parametro F
- Fè Massimo in corrispondenza dela giunzione CA.

Modalità AFIB

Modalità AFIB

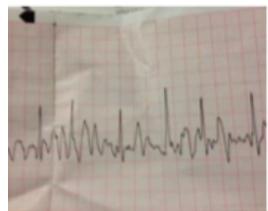
Improving applicability FA – Study 4

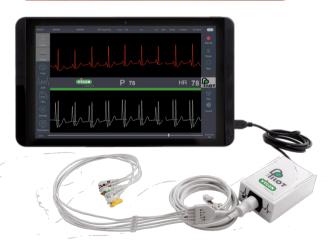
SUMMARY: Comparison data provided by Pilot algorithm vs manual

measures (FA Study 3)

OBJECTIVE: match Pilot / manual measures (peak to peak) in identifying

CAJ


PAZIENTI IN STUDIO: tutti i pazienti con fibrillazione striale che necessitano di un catetere venoso centrale (PICC, port, PICC-port, etc.); la presenza di fibrillazione atriale in atto viene confermata dal monitoraggio ECG all'inizio della manovra.


N. PATIENTS: 20

AMBIENTE: Oncology (General and Gyn) DH

METHODOLOGY: tip location by IC-ECG (saline column):

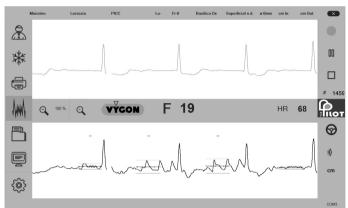
- Identification of CAJ by Pilot algorithm (values + morfology)
- Standard ECG monitor: printing in 3 positions (CAJ as identified by Pilot, 2 cm over, 2 cm below)
- Manual measures on the printed traces: match Pilot/manual for CAJ

Improving applicability FA – Study 5

Comparison PILOT vs TEE

OBIETTIVO: PILOT accuracy in identifying CAJ in FA pts

POPULATION: FA pts candidate to cardiac surgery under


TEE monitoring and needing a CVC.

N. PATIENTS: 20

SETTING: Cardio surgical OR

METHODOLOGY:

- TEE probe placed; CVC insertion under Pilot
- posizionamento di sonda TEE; posizionamento del CVC usando il Pilot;
- CAJ identification under Pilot algorithm:
- TEE measurement of distance tip CAJ

So, can we improve IC-ECG results?

... yes, we can!

